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ABSTRACT 

Equations are developed for obtaining mean monthly degree days above any base from mean monthly tem- 
perature and standard deviation of monthly average temperature. By the use of data for all months for twelve 
widely scattered stations and four bases i t  is shown tha t  the truncation coefficient for degree days below any base 
with proper modification of the argument also applies for degree days above any base. This is also proved analyti- 
cally, which leads to  some further aspects of the universality of the truncation coefficient. Two formulas for the 
coefficient are also developed. 

I. INTRODUCTION 

The study reported here is the third phase in the 
development of the general climatological analysis of 
degree days 111, [2], [3]. Reference [2] established the 
rational relationship between mean monthly degree days 
below 65" F. and temperature and gave a table of the 
truncation coefficient 1. Reference [3] showed that the 
rational relationship also applied t o  mean monthly degree 
days below any base using the same table of 1. Later it 
was noted [4] that a slightly modified relationship using 
the same table of 1 also gave mean monthly degree days 
above any base. Thus the table of the truncation coeffi- 
cient proved to be universal, applying to mean monthly 
degree days below or above any base. The evidence for 
the final steps in establishing universality has never been 
given although the method has been used extensively in 
this country and Canada [5], [6]. It is the purpose of 
this paper to give this evidence as well as an analytical 
form for the universal truncation coefficient useful in 
computer applications. 

Degree days above particular bases, although not as 
yet used as extensively as degree days below a base, are 
of growing importance in horticulture and in air condi- 
tioning requirements and power consumption estimations. 
Horticulturists use bases ordinarily between 40" and 
50" F. in systems for estimating growth progress and 
harvest dates. The literature on this application is 
extensive, of which reference [5] is a good example. 
Application to air conditioning requirement and power 
consumption has been much less extensive and even less 
has been published. The key paper is the one by Marston 
[6]. Indications are that there will be an increase in the 
use of degree days in this area. 

9. DISTRIBUTION FUNCTION AND EXPECTED VALUE 

It was shown previously that the degree day distribution 
describes a mixed population of degree day values equal 

to  zero and greater than zero. This arises from the defi- 
nition of the degree day; a particular value of which is 
the number of degrees of temperature above (or below) 
a fixed base temperature. Thus the temperature distri- 
bution truncated a t  the base temperature transformed to 
degree days, the continuous part of the distribution, and 
the truncated portion, the probability of zero degree days, 
form the mixed distribution of degree days. For degree 
days above a given base b the transformation from 
temperature to degree days is 

D=t-b; (DZO) .  ,(I) 

where t is ordinarily the average temperature for a day. 

temperature may be expressed by 
The truncated probability density function for 

where F is the distribution function of t ,  and the prob- 
ability density function has the value given by (2) on the 
interval b S t < m ,  and zero elsewhere. If the transfor- 
mation (1) is applied to  equation (2) in the usual fashion, 
the result is the probability density function of degree 
davs 

(3) 

Integrating this over the open interval O<D<m gives 
t8he distribution function of degree days greater than 
7p.rn 

(4) 

Multiplying by l-F(b) and adding F(b)  gives the desired 
distribution function on the closed interval 0 5 D< a, 
i.e., including the zero values of degree days. 
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As in the first work on the rational relationship between 
degree days and temperature the analysis is performed 
on a hypothetical middle day of a month. The average 
temperature on this day is assumed to have a normal 
distribution whose mean and standard deviation are such 
that when the conversion is made to degree days, and the 
result multiplied by the number of days in the month, 
the result is the mean degree days for the month [2 ] .  
The normal probability density function is designated by 
cp and the distribution function by @. 

Let the standardized variable of temperature be 
z=[t-E(t)]/u where E(t) and u are the population mean 
and standard deviation and the truncation point is zo. 
Then the probability density function for the truncated 
normal distribution according to equation (2) may be 
expressed as 

Hence the mean of this distribution is given by 

To evaluate the integral it is only necessary to make the 
substitutions u= -212 and dz= -du/z whence 

- j " d u =  - e"= - $ 1 2 .  

Substitution in (6) and evaluation of the integral between 
zo and a, yields the reciprocal Mill's ratio 

where the inferior star indicates truncation on the left 
of the distribution. To return to  the variable t it is 
only necessary to  take the mean of t=z+E(t) over the 
truncated distribution giving 

(8) E(t I b< t )  = U E ( z (  ZO<Z j +E(t) 

which on substituting (7) yields 

E(tJb<t)=crX*(zo)+E(t). (9) 

The mean number of degree days greater than zero is 
found by taking the expected value of D=t-b, giving 
E(DlD<O)=E(tlb<t)-b which on substitution of equa- 
tion (9) gives 

E(DID>O) =uA*(zo)+E(tj- b. (10) 

The mean of degree days for the mixed population of 
zero and non-zero degree days is the weighted mean of 
these components or 

E ( D J D 2  0) =@(zo) * O+[l--9(2o)lE(DlD>O). 

Substituting from (10) gives 

E(DlD L 0) =[I -@(zo) ][.A* ( 2 0 )  +E(t) - b]  (1 1) 

which is the theoretical relationship be tween mean 
temperature and degree days for a middle day with mean 
E(t) and standard deviation u. Unfortunately, estimates 
of u and therefore of zo are not available; so, as for degree 
days below a base [ 2 ] ,  an approximation of u must be 
employed. 

3. GENERAL DEGREE DAY FORMULA 

With u unavailable it is necessary to make some adjust- 
ment to equation (11) which makes computation possible. 
The most suitable procedure was found to be to  follow 
the method used for degree days below a base, i.e., to 
solve as much as possible for A,(zo) and associated func- 
tions of zo which are not known. 

Rearranging the terms in equation (11) and writing 
E(D) for E(DID> 0) yields 

As with degree days below a base, the left hand side is 
set equal to a new truncation coefficient A, after a modi- 
fication of the right hand side to  take care of the fact 
that no direct estimate is available for u. Let urn be the 
standard deviation of monthly average temperature and 
7 the mean correlation between all possible pairs of N 
days of a month; then 

a=1INU~/[l+(N-l)p]l'2. (13) 

The factor [ l+(N-l)p'] ' / /" is unknown because P is 
unknown, but call it k nevertheless so (13) becomes 

U= JZu,/k. (14) 

In order to standardize the argument on which A* is 
dependent, E(t), b, and J%um are combined into a single 
term to make the standardized truncation point 

-xo=(T-b)/( JRa,). 

This was --h of the previous paper [2]. Now since k is 
unknown, replace u on the right of (12) by- J T u m  and let 
the factor k divide the term on the left. Finally replace 
the left hand term by A*(%) so that 

This is the population value of the truncation coefficient 
for degree days above a base b. Solving for E(D) and 
multiplying by N to get the monthly mean degree days 
above b gives 

NE(D) = N [  A* (20) J G m +  E( t ) - b]  . (17) 
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FIGURE 1 . 4  vs. xo data for various bases. The 1-curve for degree days below 65" F. is superimposed on data for above various bases to 
show universality of the Z-curve. 

The sample estimates of these two equations are 

and 
ND= N [Z, (20) vm s,+t.- b] . (19) 

It was now immediately conjectured that I plotted 
against -xo or --h would produce an I curve independent 
of the base and identical with the ' 1! curve previously 
established for degree days below any base [3]. 

To show the universality of the truncation coefficient 
I , ,  values were computed using equation (17) on degree 
day means above four bases for all months having degree 
days a t  12 widely scattered stations. These are shown 
plottad against -xo in figure 1. The I-curve established 
for degree days below 65' E". [2] and found to hold for 

degree days below any base [3] was then superimposed 
on the data for the four bases in figure 1. The fit is 
equally as good as found for degree days below a base. 
This completes the empirical demonstration of the 
universality of the truncation coefficient for mean 
monthly degree days above or below any base. The 
demonstration will be made analytically in the next 
section. 

It is clear from the above that if the previous h is set 
equal to xo, representing the truncation coefficient for 
degrees below a base as I*(%)  then empirically at least 

Substituting in (19) gives 
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Writing D’ for degree days above a base and 0’- for degree 
days below a base generalizes (21) to 

which covers all situations. 

4. UNIVERSAL TRUNCATION COEFFICIENT 

In this section A* and A, are always a function of xo 
and A *  and A* is still a function of zo. 

For degree days above a base there are two expressions 
for E(D) given by equation (11) and an inversion of (16). 
This gives 

A,dNa,+ (E( t )  - b)  = (1 -@) [X*U+ (E( t )  - b) 1. (23) 

Dividing by JNa,, substituting the value of k from 
equation (14), and rearranging terms yield finally 

A*= (1-@) (A*/k) +azo. (24) 

For degree days below a base [2] there are analogous 
expressions for E(D) which when set equal give 

A *d%um- (E(t) --b) =@[A*u-- (E(t) --b) J. (25) 

Again dividing by d%urn, etc., as above, yields finally 

A * = @ (X*/k) - (1 - @ ) ~ o .  (26) 

If equations (23) and (25) are divided by u instead of 
430, using, of course, zo= [6-E(t)]/u and manipulations 
similar to those above, there results 

A* =[ (1-@)X* +@zol/k (27) 

A * = [ @A * - ( 1 -@) ~o]/k. (28) 

Setting the value of A* from (24) equal to  that of (28) gives 

and 

zo=kX0 (29) 

which is also clear from the definitions of xo and zo. 
The basic equations (24) and (26) may be transformed by 

recalling that A*=cp/@ and x* =cp/(t-@). Substituting 
yields 

A*=cp/k-(l-@)xo (30) 
and 

h* =(o/k+ @xo. (31) 

Since ‘ ~ ( - 3 c o ) = c p ( x ~ ) ,  cp is not affected by a change of 
sign of its argument. It is noted from equation (29) that 
k must also be an even function of G, thus the first terms 
of (30) and (31) are not affected by a change in sign of 
xo. Returning for the moment to  explicit expressions for 
A*(xo) and @(xo) and substituting -xo for xo in (31) yield 

(32) 

Recalling that @(-xo)= I--@(%) and making this sub- 
stitution in (32) give 

A*( -SO) =cp/k--[ 1 -*(-SO) J(-s~). 

A*(-xo)  =p/k+@Xo. (33) 

But this is identical with (31) ; hence 

~*(-Q)=&(SO) (34) 

which demonstrates the universality of the truncation 
coefficient. Starting from equation (31) and following 
similar operations give 

A* (-20) =A * (ZO) . (35) 

There are a number of other symmetrical relations which 
are interesting: Subtracting equation (30) from equation 
(33) yields the relation 

A * ( - Z , ) - A * ( Z ~ ) = X ~ .  (36) 

Likewise, following similar operations or simply substi- 
tuting (34) and (35) in (36) gives 

A* (20) -A* (-20) =20. (37 1 

These relations indicate the fundamental properties of the 
truncation function which assist in establishing its an- 
alytical form. 

5. ANALYTICAL FORMS OF THE TRUNCATION CURVE 

The truncation curve is not a very simple function as 
can be seen from the previous development. Since for 
practical applications it need only be known to two sig- 
nificant figures, it  seemed reasonable to fit a curve to the 
Z-table given in [2] taking into account the symmetry 
properties of the previous section. 

None of the functional forms related to  Mill’s ratio 
proved to be of much help. Finally, it was found that 
the sum of two exponentials gave a very satisfactory re- 
sult. Fitting to  the original 1-table gave the following 
pair of equations: 

I* (so) =0.34e-4. ‘$0- 0.15e-’. s z ~  (38) 

and by (36) 
L*(-xo)=z*(xo)+xo. 

These equations smoothed the 1-table slightly. Depar- 
tures from the unsmoothed table are not greater than 0.01. 

It appeared to be of interest to relate the truncat,ion 
function to Mill’s ratio. It is necessary now to use xo as 
the independent variable for all functions. Solving 
equation (30) for k yields 

(39) 

Recalling that (p(zo) is an even function and ‘substituting 
-xo for xo give 
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Mill’s ratio is defined for this purpose as On substituting 6=tan-’ xo and by simple trigonometry 
we find y=3.410[ l+~]- ’~36.  The general form of the 

k2-1=~[1+~:]-m. (44) 

Rho) =[1-W~o)I/P(~o~. (41) equation is then 

Solving for [I -@(zo)] and substituting in (39) give 

cp b o )  
(42) The logarithmic form of this was fitted by least squares 

A*(xo) +cp(~o)R(xo)xo giving finally 
k (20) = 

Since it is required to  fit k(xo) for both positive and nepa- k2(G) = 1 + 3.44 (1 +g)-’ .35. (45) 
L . .  

tive values of xo, it is necessary to have a formula for 
k(-xo). Solving (41) for %(xo) and substituting in (40) 
yield 

d x 0 )  

The fit of this to the I-table was very good, for the correla- 
tion between the logarithms was 7.2=0.9897, leaving only 
about 1 percent of the variance unexplained by equation 

(43) (45). With the k-function in analytical form a second 
method of computing 1* using Mill’s ratio is available. k(-xo)  = A *( -zo) + (p(xo) R (xo) - 1 ‘ 

A series of values of E*(xo) and l*(-xo), xo=h, for each 
tenth between 1.00 and -2.00 was obtained from the 
I-table of [2]. Values of cp(xo) and R(G) were found in 
tables I1 and I11 in reference [i’]. When these values are 
substituted in equations (42) and (43) a series of k ( ~ )  
values is obtained. Note that the positive value of xo is 
always used in R [zo). 

Examination of equations (13) and (14) suggests that 
it might be more interesting to determine the equation 
for k2 instead of k since k2=1+(N-l)p.  The series of 
values obtained from equations (42) and (43) were there- 
fore squared before being fitted as a function of xo. 

After a new series was formed by subtracting one from 
each kz a functional form k2-l=y=a COS” 6 was intui- 
tively suggested. If tan e=xo, 8=tan-’ xo, for zo= -2.0, 
-1.0, and 0, e=-1.11, -0.785, and 0 radians, hence 
cos e=0.4474, 0.7071, and 1. Since k2-1 is about 3.410 
a t  8=0.785 radians, 1.326=3.410(0.7071)” and n=2.73. 
(This will incidentally be very close to  the h a 1  value.) 
An approximation to the equation is then y=3.410  COS^.'^ 0. 

REFERENCES 

1. H. C. S. Thorn, “Seasonal Degree-Day Statistics for the United 
States,” Monthly Weather Review, vol. 80, No. 9, Sept. 1952, pp. 
143-149. 

2.  H. C. S. Thom, “The Rational Relationship between Heating 
Degree Days and Temperature,” Monthly Weather Review, vol. 
82, No. 1, Jan. 1954, pp. 1-6. 

3. H. C. S. Thorn, “Normal Degree Days Below Any Base,’’ 
Monthly Weather Review, vol. 82, No. 5, May 1954, pp. 111-115. 

4. H. C. S. Thorn, “Standard Deviation of Monthly Averagc 
Temperature,” U.S. National Atlas, 1955, pp. 1-123. 

5 .  R. M. Holmes and G. W. Robertson, “Heat Units and Crop 
Growth,” Publication 1042, Canada Department of Agriculture, 
1959, 31 pp. 

6. A. D. RIarston, “Degree Days for Summer Air Conditioning,” 
Kansas City Power and Light Company, Report, 1937. 

7. K. Pearson (editor), Tables for Statisticians and Biometricians, 
Part 11, Cambridge University Press, London, 1931, pp. 2-10 
and 11-15. 

[Received Apr i l  27, 19661 


